星光电子技术


首页 -- STC单片机解密-- STC芯片解密-- STC单片机开发-- STC单片机资料 --关于我们
 

基于PIC微控制器的LED驱动控制电路设计

1 引言

  LED作为一种供电电压低,功耗小,寿命长,无辐射的新型光源,应用领域日益扩大,成为固态照明的关键光源。许多固态照明应用常采用智能控制电路系统来驱动LED以履行各种功能和任务,譬如为确保流经LED的电流不受供电电压波动的影响维持恒定,从而使LED的亮度无明显变化的亮度调节就是控制电路系统的任务之一。亮度调节涉及电流调整与调光控制。控制电路系统的另一任务是失效识别。因LED具有很强的温度相关性,大多失效又与温度有关,故控制电路系统应能履行温度补偿。此外,通过硬件选择以适应不同亮度LED组合的驱动也极必要。一块芯片上可集成全部必要硬件功能的PIC微控制器,由于价格低廉,时钟频率高达20MHz,功耗极低和工作温度范围宽等特点,非常适合作LED的驱动控制电路。本文即讨论以PIC微控制器为控制单元设计LED驱动控制电路的一些考虑。

  2 PIC微控制器

  PIC即可编程中断控制器(ProgrammableInterruptController),一类可利用电或紫外光擦除与重写的多功能集成器件。图1为微芯(Microchip)公司PIC微控制器典型的功能框图。

PIC微控制器典型的功能框图

  采用PIC微控制器作LED驱动控制电路系统的核心,需要用到其中几个完整模块和把一些管脚设定为模拟输入。模拟电压通过A/D模块转换为数字量。被转换的信号由软件选定直接发送给A/D模块。模块的恒定基准电压可通过输入管脚外部施加,也可通过内部的基准电压模块施加。若采用后者,则PIC的电源电压应通过电压调控器保持恒定。控制器编程不需要许多硬件。控制器中产生可执行汇编程序的软件都能免费下载。PIC推荐使用处理方便和允许更改的C编译器,程序可采用模块化设计思路。以主程序为核心设置功能模块子程序,简化设计结构。运行过程中通过主程序调用各功能模块子程序,进行循环控制即可满足要求。

  3 LED的配置

  设计LED驱动电路必须考虑LED的配置。原则上,LED有三种可能配置:整个电路以电阻构成阵列连接,每个LED与电阻串联或与电阻构成阵列连接。图2为以每个LED一个电阻构成的LED列阵连接。图中每个LED拥有各自的电阻,这些电阻可作调节二极管电流的基准电阻用。

每个LED一个电阻构成的LED列阵连接

  譬如,若某个LED失效,则非串联情况下的其余LED仍继续运作,但由于总电流可在剩余的三条通路中分配,故失效将导致并联二极管中的电流增多,引起亮度的不均匀分布,不过亮度的损失根本上可由与失效器件同一通路中其余LED的电流增加得到补偿。

  4 驱动器的控制功能

  4.1 调光

  调光是驱动器控制最基本的功能,通过调光产生不同的LED亮度等级。采用脉宽调制(PWM:pulsewidthmodulation)是解决调光的简单办法。PWM信号实际上就是周期切换直流电压的通断,故利用微处理器内置的PWM模块即可方便设定和控制PWM信号。如果周期维持不便,亮度则可以利用脉冲的持续长度,即占空比D来调节。采用PWM信号的优点是可以保持峰值电流恒定,从而可以防止由于峰值电流升高产生如诸如InGaN器件中波长移位之类的负作用。

  4.2 电流调整

  驱动器控制的第二个功能是应使LED的亮度保持不变。为保证LED亮度不变,则流经LED的电流必须恒定。这就要求各单个LED流经的电流都是确定的。为测定流经二极管的电流,每个二极管都要采用串联电阻。通过测量电阻两端的电压可测出电阻流经的电流,因此便可确定流经LED的电流。电压测量由PIC中电压高达5V,并可与恒定基准电压比较的A/D模块执行。但A/D模块不能直接连接到串联电阻两端,一方面这是因为电压的电平可能远高于5V,另外,就是PWM信号必须首先转换成直流信号。经过2次测量和随后的相减会产生双倍测量误差。建议采用图3所示消除双倍测量误差问题的电流测量电路。

消除测量误差的电流测量电路

  采用该电路时,凡正输入电压与U1相接,负输入电压与U2相接。图中U1和U2信号由RC元件转换成直流信号再与运放连接。运放可利用各种电阻配置成减法器。就该电路而言,U1的直流电压将从U2减去,A/D模块测得的就是其差。这能使控制器对电流的变化做出反应。由于运算放大器具有非常高的输入阻抗,故系统不会受测量电路影响。4.3 温度测量

  然而由于受温度的影响,即使电流不变,亮度也会变化。图4所示即亮度与温度的相互关系:

亮度与温度的相互关系

  为在整个极端温度范围内维持亮度恒定,必须采用温度补偿。考虑到环境温度的测量应尽可能低廉,对二极管而言,补偿精度要求不高,容差5°C已经足够。下面给出两种可能的温度测量方法:

  4.3.1 采用温度相关型电阻进行温度测量

  首先选一个温度相关型电阻与一个温度不相关电阻串联。通过A/D模块测量电压,温度便能确定,控制器即可作出相应反应。该法的缺点是必须在PIC中以数值表形式保存电阻的响应曲线。

  4.3.2 利用门限定时器测量温度

  该法利用了PIC门限定时器模块的阻碍作用。门限定时器模块由受内部RC振荡器调节的8位定时器组成。通常,定时器在后台运行且常被微处理器重置,如果控制器因差错或陷进死循环。就能重新回到设定状态。但所用RC振荡器应与温度相关。如采用外部温度补偿的时钟发生器,则可通过比较两个时钟发生器来确定温度。利用门限定时器测量温度不需要外部元件,只是PIC制造商不能保证门限定时器的温度相关性。

  4.4 故障识别

  当然,LED不工作时,亮度调节就没有用处。下面介绍一种检测阵列中单个LED对总故障贡献的方法。故障识别可以采用以前用于检测电流的电路。LED总的故障就是导致通道中断,因此造成串联电阻无电流通过。由于昂贵的元件费用和所涉及装备的限制,自然不可能对每个二极管都添加电流检测电路。该问题此处采用了能使每个二极管都被选取并与测量电路相连的多路复用开关来解决。图5所示为含三个二极管电路采用多路复用开关故障识别技术的描述。

采用多路复用开关故障识别示意

  多路开关可通过微控制器进行数字控制。为确定电流调节二极管流经的电流和帮助识别故障,每个LED都标有可供PIC选用的地址。

  4.5 不同亮度组的调节

  由调节不同亮度组构成的驱动电路系统是一种附加选项。对于众多LED来说,必须注意将同类型的LED分成各种不同亮度的组。亮度不同组的使用导致LED流经相同电流产生的亮度不同。亮度可用PWM信号调节。可编程的输入/输出引脚即为无须重新编配控制器的调节方法而提供。因各独立的亮度组均由数字选定,故要区分所有数字标志的亮度组,必须有足够多输入引脚。例如,3个输入引脚,则可区分23=8个亮度组。于是根据输入引脚的组态(高或低),便可指定控制器输入处的数目选定相应的亮度组,其亮度因此也可调节。图6所示为3个输入引脚可用8个不同亮度组的示例。根据电阻R1X-R3X的值、微控制器的输入端将接收到大于4V的高电平信号或小于1V低电平信号,从而选定对应的亮度组。

3个输入引脚可用8个不同亮度组的示例

  综合以上考虑,可得图7所示驱动电路系统设计原理图:

驱动电路系统设计原理图

  5 结论

  PIC微控制器非常适合作LED智能控制的驱动系统,能在一块芯片上集成众多必需的硬件功能。

返回顶部


2013-2015 星光电子技术 All Rights Reserved.
如有任何问题和建议请联系:498187676@qq.com

深圳市星光芯电子有限公司 版权所有

电话:0755-88820678 QQ: 498187676 地址:深圳市龙岗区南湾街道平吉大道1号建昇大厦B栋1618(李朗软件园对面)
手机:13713820066 联系人:周工

 


站点地图

粤ICP备12084176号